Debridement means removing dead, damaged or infected tissue from wound in order to increase the healing potential of remaining healthy tissue.1-3 There are several methods of debridement and that is essential for a good preparation: surgical technique, high pressure irrigating device, chemical debridement, enzymatic preparation, autolytic hydrogels and hydrocolloids, the old larva therapy and the more recent negative pressure therapy. Ultrasonic-assisted wound debridement is a less known debridement method that uses low frequency ultrasound waves showing three clinical effects: atraumatic selective tissue debridement, wound stimulatory effect and antibacterial activity. We compare healing time, infections and procedural pain of ultrasonic debridement with autolytic debridement as for Scleroderma digital Ulcers. There is evidence to show that Ultrasonic-assisted wound debridement reduces the time of healing, needing for antimicrobial therapy, the procedural pain and consequently the cost to the healthcare system improving the patients’ quality of life.
on correcting factors involved in chronic wounds. Over the last 25-30 years, a spectrum of advanced therapeutic approaches has evolved while even basic wound care has continued to improve. These therapies include antibiotic treatment of cellulitis, removal of possible biofilms, revascularization of ischemic limbs, offloading of decubitus (pressure) ulcers, negative pressure to remove fluid, Advanced treatments for difficult wounds are needed. Recently stem cell therapy has emerged as a new approach to accelerate wound healing: autologous adipose tissue derived cells in open label studies accelerate wound healing in scleroderma digital ulcers. However, there are some potential limitations to successful stem cell therapy including suboptimal debridement for wound bed preparation. Appropriate ulcer care principles also include optimizing the wound bed by debridement, facilitating reduction of edema, decreasing bacterial burden, and providing the right balance of moisture.

Ultrasonic-assisted wound debridement is a lesser known debridement method that uses low frequency ultrasound waves. Scientific literature highlights the main characteristics of Ultrasonic-assisted debridement as an atraumatic surgical debridement and painless compared to killing bacterial action resulting in reduction of microbial load induced by temperature and by the process of cavitation and selectivity that protects healthy tissue. The ultrasound device (Figure 2) Surgysonic Wound® Esacrom consists of a console with a peristaltic pump (for irrigation, disinfection and cooling of the site to be treated) plus a piezoelectric ultrasonic hand-piece designed to fragment and remove necrotic tissues, a metal rod to maintain the fluid reservoir, a metal rod for the hand piece, a pneumatic pedal and various types of tips, each for a different form of lesion. It is used in continuous and pulsed mode to optimize performance, according to the sensitivity of the patient and the type of tissue involved.

It generates ultasounds able to trigger the tip used for removal of tissue, as well as to control the temperature of the tip using saline previously cooled to about 4 °C, in direct contact with the treated lesion. Ultrasounds are waves

![Figure 1. Scleroderma gangrene.](image-url)
of higher frequency than what perceived by the ear allowing the vibration of the hand-piece of the instrument at a frequency of about 30,000 Hz per second. The basic process involves the cavitation of water drops by emitting ultrasounds: this occurs when a liquid is subjected to ultrasounds in such a way that the acoustic wave causes the formation, growth and rapid decompression of steam bubbles in the liquid, forming areas of vapor within the liquid which subsequently collapse and implode. This is due to the local decrease of pressure to a lower value than the vapor pressure of the liquid itself, which becomes a gas and forms cavities containing vapor. Acceleration of the insert due to vibration and emission of sequence liquid saline phases generate pressure and vacuum. This forms microbubbles containing vapor that solicited from external pressure implodes exerting pressure on surrounding microbubbles which in turn favors cavitation, dissection of tissues at different densities, fragmentation of fibrin and necrotic tissue and finally debridement. This mechanism detaches tissues of different densities, to emulsify the fibrin or biofilm and thus eliminate necrosis. Thanks to its elastic properties, healthy tissue owns higher vibration amplitude and deformation capacity and therefore is preserved.9,10

Technique is relatively simple, results are immediate and selective, so it does not affect healthy tissue and causes no pain throughout the process of removing the excess material. This makes the technique particularly suitable for scleroderma ulcers treatment. Compared to classic debridement such as enzyme preparations (which require frequent applications with the risk of skin sensitization and the onset of burning sensations in addition to having a slow action especially on thick necrotic layers) and autolytic debridement (in which dressing stimulates the autonomous production of autolytic enzymes by modifying the environment at the basis of the lesion, yielding/absorbing moisture and gelling causing frequent maceration of the edges and acting very slowly), Ultrasound-assisted debridement is proposed as an advanced technique complementary to traditional debridement in the treatment of scleroderma ulcers for cleaning the wound bed of the lesion in an atraumatic and painless way.

MATERIALS AND METHODS

We conducted a case-control study of patients referred to our department for scleroderma ischemic digital ulcers from September 2016 to December 2016. We compared 5 patients treated with ultrasound technique (Surgysonic Wound®-Esacrom) referred as A Group with the clinical course of 5 patients with scleroderma digital ulcers with similar characteristics but treated exclusively with traditional debridement (Hydrogels) B Group. We compared as outcomes the time of healing (days), the need for antimicrobial therapy, the pain perception on a visual analogue scale (VAS Scale 0-10) during dressing as procedural pain.

All the treated ulcers had a chronic course with an onset > 8 weeks and presented a necrotic eschar ≤2 cm size distal to the proximal interphalangeal joint on the fingertips, on the volar aspect of the fingers or on the nail base without radiological bone involvement (without radiographic features of osteomyelitis). In order to prevent or reduce the onset of pain treating ulcers, a local anesthetic ointment with lidocaine 5% was applied 15 minutes before dressing.11 Dressing’s frequency was twice a week.

A Group: in the first session of debridement the number of ultrasonic applications ranged from 3 to 6 with an average time of 50-60 seconds and up to a total time of maximum 6 minutes application obtaining the progressive excision of the necrotic eschar. From the second treatment we observed an initial granulation process and each time
we did individual applications of 40-50 seconds, sufficient for the removal of the bottom bound. At the end of each session of debridement, hydrogel and paraffin gauze were applied on the lesion.

B Group: in the first dressing hydrogel and paraffin gauze were applied on the necrotic eschar From the second dressing we tried to remove the devitalized tissue and the previous dressing’s remnants using saline solution, gauze and only the needle tip 16 gauge without touching healthy periwound tissue (>5 VAS).

Statistical analysis

Clinical features of patients were analyzed using the Student’s t-test for unpaired data. Meaningful comparisons were considered when P<0.05 (Table 1).

RESULTS

A Group: no patients needed antibiotic therapy throughout the treatment period and all patients showed good compliance of the therapy and referred a mild and bearable pain symptoms ≤3 (2.2±0.8) according to the VAS Scale. Healing occurred after a treatment of 4-8 weeks with an average of 30.6±21.1 days (Figure 3).

B Group: 1 patient showed infections and phlogistic signs and underwent targeted antibiotic therapy. At every access to medication patients reported a pain >5 (7.0±1.2) according to the VAS Scale. After 8 weeks the lesions were still at the stage of debridement with initial signs of granulation and were healed in an average time of 75±13.1 days (Figure 4).

DISCUSSION

From June 2016 we started to use ultrasound debridement and we treated a very heterogeneous population of scleroderma patients with digital ulcers using ultrasound debridement and we observed from the first time a good compliance and a strongly favorable outcome in all patients, suggesting to analyze and quantify the different outcome between traditional autolytic debridement and ultrasound debridement, comparing two groups of patients with the similar size and positions of scleroderma ulcers, same subset of disease, same systemic therapies, same seasonal enrollment period, same beginning of treatment, same operator, in order to support our observation and experience.

The strong favorable outcome regarding the time of healing, needing for antimicrobial therapy, the procedural pain has led us to use ultrasound debridement for the benefit of all patients and to limit the case-control study to 10 patients (5 case and 5 controls). Although the small size of this study, ultrasound debridement is promising in the treatment of scleroderma ulcers and need to confirm the preliminary evidences with other studies.

CONCLUSIONS

Ultrasound-assisted debridement, not recently introduced, has been revived thanks to the production of the industry of medical equipment with new models capable of offering the most sensitive and selective debridement procedures. It has long been used as a dental technique for tartar removal and fort other local interventions. Scientific literature underlines the main characteristics that favor ultrasonic debridement in wound care. It is atraumatic and painless due to the ability of selectivity that protects healthy tissue. It also has a killing bacterial activity, resulting in reduction of microbial load induced by temperature and cavitation processes. We compare healing time, infections rate and procedural pain of ultrasonic debridement with traditional autolytic debridement for Scleroderma digital Ulcers. We reported that Ultrasound

Table 1. Clinical features, systemic therapy of digital ulcers and pain.

<table>
<thead>
<tr>
<th>Patients ID/sex</th>
<th>1A/F</th>
<th>2A/F</th>
<th>3A/F</th>
<th>4A/F</th>
<th>5A/M</th>
<th>1B/F</th>
<th>2B/F</th>
<th>3B/F</th>
<th>4B/F</th>
<th>5B/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>71</td>
<td>58</td>
<td>42</td>
<td>74</td>
<td>42</td>
<td>74</td>
<td>57</td>
<td>53</td>
<td>75</td>
<td>47</td>
</tr>
<tr>
<td>SSc Subtype</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Diffuse</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Anti centromere</td>
</tr>
<tr>
<td>Smoker</td>
<td>no</td>
</tr>
<tr>
<td>Iloprost 5 days/mont: 2ng/kg/minth/day</td>
<td>yes</td>
</tr>
<tr>
<td>Bosentan125mg x 2</td>
<td>yes</td>
</tr>
<tr>
<td>Anti+aggregation ASA 100 mg</td>
<td>yes</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>yes</td>
</tr>
<tr>
<td>Acetaminophen+contramal</td>
<td>yes</td>
</tr>
</tbody>
</table>
Ultrasonic-assisted wound debridement for scleroderma digital ulcers

Figure 3. A Group: ultrasound debridement.

Figure 4. B Group: autolitic debridement.
debridement leads to a significant reduction in healing time (P-value 0.004) (Figure 5) and the rate of infections and therefore presents a good patient compliance to treatment thanks to a significant reduction of procedural pain (P-value 0.001) (Figure 6).

REFERENCES

Figure 5. Time of healing. A Group (ultrasonic debridement) vs B Group (autolitic debridement): 30.6±21.1 vs 75±13.1 days, P-value 0.004.

Figure 6. Procedural pain VAS scale. A Group vs B Group: 2.2±0.8 vs 7.0±1.2, P-value 0.001.